CIPF Seminar

Genetic and Epigenetic crosstalk in Alzheimer's disease: towards a more integrative analysis

Speaker: Dr. Jose V. Sanchez Mut, PhD
Postdoctoral Researcher, Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne, Switzerland
Date: 17/05/19 - 12:30h
Place: Salón de Actos CIPF

Abstract: The chances to develop Alzheimer’s disease (AD) result from a combination of genetic and non-genetic risk factors, the latter likely mediated by epigenetic mechanisms. In the past, genome-wide association studies (GWAS) have identified an important number of risk loci associated with AD pathology, but a causal relationship thereof remains difficult to establish. In contrast, locus-specific or epigenome-wide association studies (EWAS) have revealed site-specific epigenetic alterations and thereby provide mechanistic insights for a particular risk gene, but often lack the statistical power of GWAS. Combining both approaches, we have found that PM20D1 is a methylation/expressional quantitative trait locus (mQTL/eQTL) coupled to an AD-risk associated haplotype, which displays enhancer-like characteristics and contacts the PM20D1 promoter via a haplotype-dependent, CTCF-mediated chromatin loop. PM20D1 is increased following AD-related neurotoxic insults, at symptomatic stages in the APP/PS1 mouse model of AD and in human AD patients, who are carriers of the non-risk haplotype. Furthermore, both genetically increasing PM20D1 expression and pharmacologically mimicking PM20D1 activity reduce AD-related pathologies and improve cognitive performance. In line, PM20D1 genetic reduction aggravates AD-related pathologies. No other genes in the eQTL region show similar effects. These findings suggest (i) that in a particular genetic background, PM20D1 contributes to neuroprotection, (ii) that PM20D1 is compromised in AD-risk haplotype carriers, and (iii) that PM20D1-derived treatments might be suitable therapeutical approaches, from which we expect AD patients, and especially AD-risk haplotype carriers, to benefit in the future.

References: