Documento que se acompañan:

- Copia de la autorización de derivación de la línea celular, junto con informe del Comité Ético del centro de procedencia.
- Copia de cualquier publicación científica relacionada con la derivación y/o caracterización de la línea.
- C. V. del investigador principal (una página; formato libre).
- Otros (especificar).

SECCIÓN 1
Section 1

Nombre de la línea: hiPSC clone 1
Name of the line:

Investigador principal: Majlinda Lako and Lyle Armstrong
Principal Investigator:

Origen de la línea celular: Adult human skin fibroblasts (AHDF)
Origin of the cell line

Embrionario Fetal Adult
Embryonic Fetal Adult

¿La línea celular ha sido derivada de un embrión con anomalía genética?
Has the cell line been derived from an embryo with genetic anomaly?

NO SÍ (especificar)
No Yes (specify)

Identificación genética de la línea celular. Método y resultado
Genetic identity of the cell line. Method and result
Method: DNA fingerprinting

To confirm that hiPSC clones 1 was of identical origin to adult fibroblasts, we carried out DNA fingerprinting. Total genomic DNA was extracted from all three samples and amplified with 11 microsatellite markers: D3S1358, vWA, D16S539, D2S1338, Amelogenin, D8S1179, D21S11, D18S51, D19S433, TH01, and FGA and analysed on an ABI 377 sequence detector using Genotype software (Applied Biosystems, Foster City, CA; http://www.appliedbiosystems.com).

Result: DNA fingerprinting of hiPSC clone 1 and AHDF showing identical DNA genetic profile.
SECCIÓN 2
Section 2
Investigador Principal:
Principal Investigator:
Majlinda Lako and Lyle Armstrong
Dirección Postal:
Postal address: Centro de Investigación Príncipe Felipe
Avda. Autopista del Saler, 16-3 (junto Oceanográfico)
46012 VALENCIA (Spain)
Centro de Trabajo:
Institution:
Centro de Investigación Príncipe Felipe
Teléfono (phone): +34 963289681 Ext. 1211/1204
Fax: +34 963289701
E-mail: mlako@cipf.es; larmstrong@cipf.es

SECCIÓN 3
Section 3
Datos del Depositante
Applicant Details
Datos de la Línea Celular
Details of Cell Line

Tipo de muestra biológica (especificar estadio embrionario, semanas de gestación,...)
Kind of biological sample (specify embryonic stage, weeks of pregnancy,...)
Human induced pluripotent Stem cells

Muestra biológica
Biological simple: adult human skin fibroblasts

Fresco □
Crioconservado ☑

Fecha de la obtención del muestra biológica
Date of obtaining the biological sample
July 2008

Fecha del uso o descongelación (si congelado)
Date used or thawed (if frozen)
July 2008

Fecha de la donación del muestra biológica
Date of donation of the biological sample

Descripción general del procesamiento previo del muestra biológica utilizado (cultivo embrionario, procesamiento muestra fetal o de tejido adulto)
General description of the processing of the biological sample used (embryonic culture, processing of fetal sample or of adult tissue)
Adult human dermal fibroblasts in the log phase of growth (Lonza) were transduced with retroviral particles. Briefly, the following plasmids: pMXs-hNANOG, pMXs-hOCT4, pMXs-hSOX2, pMXs-hKLF4 and pMXs-hcMYC (Addgene) were packaged into retroviral particles by transfection into Phoenix Amphotropic cells using the Calcium Phosphate transfection kit (Sigma Aldrich, Poole, Dorset, UK http://www.sigmaaldrich.com/). Retroviral transductions were performed twice at a 24 hour interval. Forty eight hours after the first transduction, the adult dermal fibroblasts were disaggregated to single cells by trypsinisation (0.05% Trypsin, Invitrogen) then plated onto feeder layers of mitotically inactivated mouse embryonic fibroblasts in hESC culture medium at a density of 8,000 cells per one well of a six well plate. The feeder plates with retrovirus treated cells were maintained at 37°C / 5% CO2 for 21 days or until colonies of cells with a morphology similar to ESC appeared. These were mechanically dissected into several pieces and plated onto fresh feeder cells to develop further colonies for characterisation. We were able to obtain 7 hiPSC clones from 50,000 transduced adult dermal fibroblasts which results in 0.014% efficiency of reprogramming. Two of the hiPSC clones, named as hiPSC clone 1 and 4 were characterised further and used for all analyses described in this study.
En caso de muestra embrionaria, indicar si se utilizaron blastómeros o células de la masa celular interna y el método de aislamiento utilizado
If of embryonic origin, indicate whether blastomeres or internal cell mass were used, as well as the isolation method
Not applicable

Origen del soporte celular o acelar utilizado para la derivación, así como de los componentes de los medios de cultivo (si se describen en publicación, indicar además referencia)
Origin of the cellular or cellular free support used in derivation in addition to the components of the culture mediums (if they are described in a publication, please indicate the reference).
Armstrong et al. Stem Cells (in press) and attached to this application

Mantenimiento de la línea: Line maintenance
Ratio de pase: Passage ratio 1 to 4
Método de pase: Passage method collagenase IV on mitotically inactivated mouse embryonic fibroblasts with human ESC medium

<table>
<thead>
<tr>
<th>Xenobióticos</th>
<th>sí</th>
<th>no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenobiotics</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Descripción de las características morfológicas de la línea en cultivo
(forma y tamaño colonias; forma y tamaño células; ratio núcleo/citoplasma; otros)
Description of the morphological characteristics of the line in culture (form and size of the colonies; form and size of the cells; nucleus/cytoplasm ratio; others)
High nucleus to cytoplasm ratio, identical to human ESC morphology

Controles microbiológicos realizados (indicar detalladamente)
Microbiological controls carried out (indicate in detail) mycoplasma test carried out using Elisa and PCR: result negative
Marcadores:

<table>
<thead>
<tr>
<th>Marcador/hormona</th>
<th>Método</th>
<th>nº pase</th>
<th>resultado</th>
<th>comentarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ectodermo/Endodermo</td>
<td>CLON/Colón</td>
<td>SC</td>
<td>20-30 pos</td>
<td></td>
</tr>
<tr>
<td>Mesoderma</td>
<td>CLON/Colón</td>
<td>SC</td>
<td>20-30 pos</td>
<td></td>
</tr>
<tr>
<td>In Vitro beta 3 tubulin</td>
<td>SC</td>
<td>20-30 pos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo teratoma</td>
<td>SC</td>
<td>20-30 pos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>CGH</td>
<td>yes</td>
<td>NORMAL</td>
<td>report attached</td>
</tr>
</tbody>
</table>

Capacidad de diferenciación

Ectodermo	Beta 3 tubulin	20-30 positive
Endodermo	AFP	20-30 positive
Mesodermo	CD31	20-30 positive

Método: SC injections into SCID mice

Resultado: see next section
Descripción de las características de diferenciación in vitro

To investigate whether continuous expression of some of the exogenous factors can affect the differentiation potential, both hiPSC clones were removed from the feeder layers and placed either in suspension culture to make EBs or attached to gelatin coated plates in differentiation media as described in Materials and Methods (Figure 3A). Quantitative RT-PCR analysis suggested that OCT4 expression was significantly downregulated during the 30 day EB differentiation time course similarly to hESC (Figure 3B). Similarly the expression of mesodermal marker, KDR (Figure 3B), endodermal marker AFP (data not shown) and ectodermal marker, NESTIN was upregulated during the differentiation time course in a similar pattern to differentiating hESC. Similar results were obtained by immunohistochemistry (Figure 3C). We also tested the in vitro differentiation potential of hiPSC clones using monolayer differentiation conditions as described in the Materials and Methods section. Although there are differences in upregulation of various markers during the 4 week time course, it is clear that both hiPSC clones can give rise to differentiated cells expressing markers of endoderm (as shown by AFP expression), mesoderm (as shown by BRACHYURY expression), trophoeectoderm (as shown by CDX2 expression), primitive endoderm (as shown by GATA6 expression) and primitive ectoderm (as shown by PAX6 expression; see Supplementary Figure 1). Both hESC and hiPSC clone 4 also show gradual upregulation of primitive ectoderm marker, FGF5, while very little expression of this marker is seen during differentiation of hiPSC clone 1 suggesting impaired differentiation towards this extra-embryonic lineage (Supplementary Figure 1).

Datos de la determinación de pluripotencialidad in vivo o formación de teratomas

To prove the pluripotency of hiPSC clones, we carried out teratoma formation assays for both hiPSC clones 1 and 4 as well as control hESC. Human ESC (H9) grafted into SCID mice developed into teratomas that were restricted to the site of transplantation. Histological examination of teratomas revealed advanced differentiation of structures representative of all three embryonic germ layers (Figure 4A). Similarly, hiPSC clone 4 produced teratomas containing a diverse range of differentiated structures and examples of tissues from each germ layer, including neuroepithelium, kidney, intestine and cartilage (Figure 4B). In contrast, only one of the transplants for hiPSC clone 1 produced a small tissue growth that did not possess the characteristic heterogeneous structure of a fully differentiated teratoma (Figure 4C). The success rate of tumour formation was 75% for the human ESC, 33% for hiPSC clone 4 and 16% for hiPSC clone 1 (similar numbers of human ESC and hiPSC clones were transplanted as detailed in materials and methods).

Datos de la tipificación HLA

HLA typification data: not carried out

Consistencia celular tras 6 pases de congelación y descongelación. Resultados.

Cell consistency alter 6 passages of freezing and thawing. Results: normal

Pase en el momento del registro

Passage at the time of the recording: 60
<table>
<thead>
<tr>
<th>¿Ha sido la línea modificada genéticamente?</th>
<th>¿Se llevó a cabo un análisis clonal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí Yes □</td>
<td>Sí Yes □</td>
</tr>
<tr>
<td>No No □</td>
<td>No No □</td>
</tr>
</tbody>
</table>

Comentarios/ Comments:

- ¿Se llevó a cabo un análisis clonal? Has a clonal analysis been carried out?
- **Sí** Yes □ **No** No □ **Resultado I Result**
Three new markers, ABCG2, REX1 and DNMT3B have been suggested as potential tools for distinguishing between fully and partially reprogrammed hiPSC colonies (14). In view of this we carried out quantitative RT-PCR analysis for expression of a range of pluripotency markers including the above three mentioned genes. In contrast to what has been described recently by Chan et al. (14) we found that ABCG2 and REX1 were expressed at similar levels in hiPSC clone 1 and hiPSC clone 4 when compared to human ESC (Figure 4D), hence this clone cannot be classified as partially reprogrammed. Other pluripotency markers such as DPPA3, DPPA2, DPPA5, LEFTY2, GDF3 and DNMT3B were expressed at lower levels in both hiPSC clones when compared to hESC, whilst SOX2 showed the reverse pattern. Notwithstanding this, both hESC and hiPSC clone 4 were able to downregulate the expression of all the markers investigated here during the four week time course of differentiation, whilst hiPSC clone 1 was unable to fully downregulate the expression of ABCG2 and REX1 and to a smaller extent the expression of TERT, LEFTY2 and DPPA4 (Figure 4D). For therapeutic purposes the most desirable cell lines are the hiPSC clones that can differentiate in vitro into cell types representative of three germ layers without forming teratomas (15). For this reason it is imperative to fully study these clones along with the ones that have the ability to give rise to teratoma and hESC. In view of this, we used both hiPSC clone 1 (non teratoma forming) and hiPSC clone 4 (teratoma forming) in all subsequent experiments shown in this manuscript.

Otras observaciones o información relevantes (a rellenar por el BNLC):
Other comments or relevant information (to be completed by BNLC)
Follow up of the line (to be completed by BNLC)
SECCIÓN 4 Declaración

Confirmo que la información contenida en estos impresos es cierta y asumo total responsabilidad sobre la misma.
I confirm that the information contained in this form is true and I assume total responsibility for it.

<table>
<thead>
<tr>
<th>Firma en Representación del Centro / Signature in Representation of the Centre</th>
<th>Firma del Investigador Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Representante legal del Departamento/Centro)</td>
<td>(Signature of the Principal Investigator)</td>
</tr>
<tr>
<td>(Legal Representative of the Department/Centre)</td>
<td></td>
</tr>
</tbody>
</table>

Fecha / Date:
Fecha / Date:

<table>
<thead>
<tr>
<th>Nombre y Cargo de la Persona Representante del Centro:</th>
<th>Teléfono / Telephone:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name and Position of the Person Representing the Centre:</td>
<td>Fax:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dirección Postal:</th>
<th>E-mail:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postal Address:</td>
<td></td>
</tr>
</tbody>
</table>

Los apartados que requieran entrada de texto, deben llenarse tanto en Castellano como en Inglés
Text items should be filled in both Spanish and English